Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Redox Biol ; 70: 103054, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38309122

RESUMEN

Inflammatory macrophages are key drivers of atherosclerosis that can induce rupture-prone vulnerable plaques. Skewing the plaque macrophage population towards a more protective phenotype and reducing the occurrence of clinical events is thought to be a promising method of treating atherosclerotic patients. In the current study, we investigate the immunomodulatory properties of itaconate, an immunometabolite derived from the TCA cycle intermediate cis-aconitate and synthesised by the enzyme Aconitate Decarboxylase 1 (ACOD1, also known as IRG1), in the context of atherosclerosis. Ldlr-/- atherogenic mice transplanted with Acod1-/- bone marrow displayed a more stable plaque phenotype with smaller necrotic cores and showed increased recruitment of monocytes to the vessel intima. Macrophages from Acod1-/- mice contained more lipids whilst also displaying reduced induction of apoptosis. Using multi-omics approaches, we identify a metabolic shift towards purine metabolism, in addition to an altered glycolytic flux towards production of glycerol for triglyceride synthesis. Overall, our data highlight the potential of therapeutically blocking ACOD1 with the aim of stabilizing atherosclerotic plaques.


Asunto(s)
Aterosclerosis , Placa Aterosclerótica , Humanos , Animales , Ratones , Placa Aterosclerótica/metabolismo , Aterosclerosis/tratamiento farmacológico , Aterosclerosis/genética , Aterosclerosis/metabolismo , Succinatos/farmacología , Macrófagos/metabolismo
2.
Life Sci Alliance ; 6(11)2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37699657

RESUMEN

Previously, we and others have shown that SARS-CoV-2 spike-specific IgG antibodies play a major role in disease severity in COVID-19 by triggering macrophage hyperactivation, disrupting endothelial barrier integrity, and inducing thrombus formation. This hyperinflammation is dependent on high levels of anti-spike IgG with aberrant Fc tail glycosylation, leading to Fcγ receptor hyperactivation. For development of immune-regulatory therapeutics, drug specificity is crucial to counteract excessive inflammation whereas simultaneously minimizing the inhibition of antiviral immunity. We here developed an in vitro activation assay to screen for small molecule drugs that specifically counteract antibody-induced pathology. We identified that anti-spike-induced inflammation is specifically blocked by small molecule inhibitors against SYK and PI3K. We identified SYK inhibitor entospletinib as the most promising candidate drug, which also counteracted anti-spike-induced endothelial dysfunction and thrombus formation. Moreover, entospletinib blocked inflammation by different SARS-CoV-2 variants of concern. Combined, these data identify entospletinib as a promising treatment for severe COVID-19.


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2 , Anticuerpos Antivirales , Inflamación/tratamiento farmacológico , Inmunoglobulina G/farmacología
3.
Cell Rep ; 41(8): 111703, 2022 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-36417856

RESUMEN

Macrophages are critical immune cells in inflammatory diseases, and their differentiation and function are tightly regulated by histone modifications. H3K79 methylation is a histone modification associated with active gene expression, and DOT1L is the only histone methyltransferase for H3K79. Here we determine the role of DOT1L in macrophages by applying a selective DOT1L inhibitor in mouse and human macrophages and using myeloid-specific Dot1l-deficient mice. We found that DOT1L directly regulates macrophage function by controlling lipid biosynthesis gene programs including central lipid regulators like sterol regulatory element-binding proteins SREBP1 and SREBP2. DOT1L inhibition also leads to macrophage hyperactivation, which is associated with disrupted SREBP pathways. In vivo, myeloid Dot1l deficiency reduces atherosclerotic plaque stability and increases the activation of inflammatory plaque macrophages. Our data show that DOT1L is a crucial regulator of macrophage inflammatory responses and lipid regulatory pathways and suggest a high relevance of H3K79 methylation in inflammatory disease.


Asunto(s)
N-Metiltransferasa de Histona-Lisina , Placa Aterosclerótica , Humanos , Ratones , Animales , N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/metabolismo , Macrófagos/metabolismo , Lípidos
4.
Front Cardiovasc Med ; 9: 829877, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35224060

RESUMEN

Macrophages are critical components of atherosclerotic lesions and their pro- and anti-inflammatory responses influence atherogenesis. Type-I interferons (IFNs) are cytokines that play an essential role in antiviral responses and inflammatory activation and have been shown to promote atherosclerosis. Although the impact of type-I IFNs on macrophage foam cell formation is well-documented, the effect of lipid accumulation in monocytes and macrophages on type-I IFN responses remains unknown. Here we examined IFN stimulated (ISG) and non-ISG inflammatory gene expression in mouse and human macrophages that were loaded with acetylated LDL (acLDL), as a model for foam cell formation. We found that acLDL loading in mouse and human macrophages specifically suppressed expression of ISGs and IFN-ß secretion, but not other pro-inflammatory genes. The down regulation of ISGs could be rescued by exogenous IFN-ß supplementation. Activation of the cholesterol-sensing nuclear liver X receptor (LXR) recapitulated the cholesterol-initiated type-I IFN suppression. Additional analyses of murine in vitro and in vivo generated foam cells confirmed the suppressed IFN signaling pathways and suggest that this phenotype is mediated via down regulation of interferon regulatory factor binding at gene promoters. Finally, RNA-seq analysis of monocytes of familial hypercholesterolemia (FH) patients also showed type-I IFN suppression which was restored by lipid-lowering therapy and not present in monocytes of healthy donors. Taken together, we define type-I IFN suppression as an athero-protective characteristic of foamy macrophages. These data provide new insights into the mechanisms that control inflammatory responses in hyperlipidaemic settings and can support future therapeutic approaches focusing on reprogramming of macrophages to reduce atherosclerotic plaque progression and improve stability.

5.
Int J Mol Sci ; 22(21)2021 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-34769069

RESUMEN

C-reactive protein (CRP) is an acute-phase protein in humans that is produced in high quantities by the liver upon infection and under inflammatory conditions. Although CRP is commonly used as a marker of inflammation, CRP can also directly contribute to inflammation by eliciting pro-inflammatory cytokine production by immune cells. Since CRP is highly elevated in serum under inflammatory conditions, we have studied the CRP-induced cytokine profile of human monocytes, one of the main innate immune cell populations in blood. We identified that CRP is relatively unique in its capacity to induce production of the pro-inflammatory cytokine IL-23, which was in stark contrast to a wide panel of pattern recognition receptor (PRR) ligands. We show that CRP-induced IL-23 production was mediated at the level of gene transcription, since CRP particularly promoted gene transcription of IL23A (encoding IL-23p19) instead of IL12A (encoding IL-12p35), while PRR ligands induce the opposite response. Interestingly, when CRP stimulation was combined with PRR ligand stimulation, as for example, occurs in the context of sepsis, IL-23 production by monocytes was strongly reduced. Combined, these data identify CRP as a unique individual ligand to induce IL-23 production by monocytes, which may contribute to shaping systemic immune responses under inflammatory conditions.


Asunto(s)
Proteína C-Reactiva/metabolismo , Subunidad p19 de la Interleucina-23/metabolismo , Monocitos/metabolismo , Células Cultivadas , Humanos , Subunidad p19 de la Interleucina-23/genética , ARN Mensajero/genética , Activación Transcripcional
6.
Sci Transl Med ; 13(596)2021 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-33979301

RESUMEN

Patients diagnosed with coronavirus disease 2019 (COVID-19) become critically ill primarily around the time of activation of the adaptive immune response. Here, we provide evidence that antibodies play a role in the worsening of disease at the time of seroconversion. We show that early-phase severe acute respiratory distress syndrome coronavirus 2 (SARS-CoV-2) spike protein-specific immunoglobulin G (IgG) in serum of critically ill COVID-19 patients induces excessive inflammatory responses by human alveolar macrophages. We identified that this excessive inflammatory response is dependent on two antibody features that are specific for patients with severe COVID-19. First, inflammation is driven by high titers of anti-spike IgG, a hallmark of severe disease. Second, we found that anti-spike IgG from patients with severe COVID-19 is intrinsically more proinflammatory because of different glycosylation, particularly low fucosylation, of the antibody Fc tail. Low fucosylation of anti-spike IgG was normalized in a few weeks after initial infection with SARS-CoV-2, indicating that the increased antibody-dependent inflammation mainly occurs at the time of seroconversion. We identified Fcγ receptor (FcγR) IIa and FcγRIII as the two primary IgG receptors that are responsible for the induction of key COVID-19-associated cytokines such as interleukin-6 and tumor necrosis factor. In addition, we show that anti-spike IgG-activated human macrophages can subsequently break pulmonary endothelial barrier integrity and induce microvascular thrombosis in vitro. Last, we demonstrate that the inflammatory response induced by anti-spike IgG can be specifically counteracted by fostamatinib, an FDA- and EMA-approved therapeutic small-molecule inhibitor of Syk kinase.


Asunto(s)
Anticuerpos Antivirales/química , COVID-19/inmunología , Inmunoglobulina G/química , Macrófagos Alveolares/inmunología , Glicosilación , Humanos , Inflamación , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/inmunología
7.
Nat Commun ; 11(1): 6296, 2020 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-33293558

RESUMEN

Macrophages represent a major immune cell population in atherosclerotic plaques and play central role in the progression of this lipid-driven chronic inflammatory disease. Targeting immunometabolism is proposed as a strategy to revert aberrant macrophage activation to improve disease outcome. Here, we show ATP citrate lyase (Acly) to be activated in inflammatory macrophages and human atherosclerotic plaques. We demonstrate that myeloid Acly deficiency induces a stable plaque phenotype characterized by increased collagen deposition and fibrous cap thickness, along with a smaller necrotic core. In-depth functional, lipidomic, and transcriptional characterization indicate deregulated fatty acid and cholesterol biosynthesis and reduced liver X receptor activation within the macrophages in vitro. This results in macrophages that are more prone to undergo apoptosis, whilst maintaining their capacity to phagocytose apoptotic cells. Together, our results indicate that targeting macrophage metabolism improves atherosclerosis outcome and we reveal Acly as a promising therapeutic target to stabilize atherosclerotic plaques.


Asunto(s)
ATP Citrato (pro-S)-Liasa/deficiencia , Macrófagos/metabolismo , Placa Aterosclerótica/inmunología , ATP Citrato (pro-S)-Liasa/antagonistas & inhibidores , ATP Citrato (pro-S)-Liasa/genética , Anciano , Animales , Apoptosis/inmunología , Colesterol/biosíntesis , Colágeno/metabolismo , Dieta Alta en Grasa/efectos adversos , Modelos Animales de Enfermedad , Ácidos Grasos/biosíntesis , Femenino , Fibrosis , Perfilación de la Expresión Génica , Humanos , Lipidómica , Lipogénesis/inmunología , Receptores X del Hígado/metabolismo , Activación de Macrófagos , Macrófagos/inmunología , Masculino , Ratones Noqueados , Necrosis/inmunología , Necrosis/patología , Fagocitosis , Placa Aterosclerótica/tratamiento farmacológico , Placa Aterosclerótica/patología
8.
BMJ Open Diabetes Res Care ; 7(1): e000751, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31798899

RESUMEN

Introduction: Obesity is recognized as a risk factor for various microbial infections. The immune system, which is affected by obesity, plays an important role in the pathophysiology of these infections and other obesity-related comorbidities. Weight loss is considered the most obvious treatment for obesity. However, multiple studies suggest that the comorbidities of obesity may persist after weight loss. Deregulation of immune cells including adipose tissue macrophages of obese individuals has been extensively studied, but how obesity and subsequent weight loss affect immune cell function outside adipose tissue is not well defined. Research design and methods: Here we investigated the phenotype of non-adipose tissue macrophages by transcriptional characterization of thioglycollate-elicited peritoneal macrophages (PM) from mice with diet-induced obesity and type 2 diabetes (T2D). Subsequently, we defined the characteristics of PMs after weight loss and mimicked a bacterial infection by exposing PMs to lipopolysaccharide. Results and conclusions: In contrast to the proinflammatory phenotype of adipose tissue macrophages in obesity and T2D, we found a deactivated state of PMs in obesity and T2D. Weight loss could reverse this deactivated macrophage phenotype. Anti-inflammatory characteristics of these non-adipose macrophages may explain why patients with obesity and T2D have an impaired immune response against pathogens. Our data also suggest that losing weight restores macrophage function and thus contributes to the reduction of immune-related comorbidities in patients.


Asunto(s)
Diabetes Mellitus Experimental/inmunología , Diabetes Mellitus Tipo 2/inmunología , Inmunidad Celular/fisiología , Macrófagos Peritoneales/inmunología , Obesidad/inmunología , Pérdida de Peso/fisiología , Animales , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/terapia , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/patología , Diabetes Mellitus Tipo 2/terapia , Dieta Alta en Grasa , Grasas de la Dieta/farmacología , Inmunidad Celular/efectos de los fármacos , Resistencia a la Insulina/fisiología , Activación de Macrófagos/efectos de los fármacos , Activación de Macrófagos/fisiología , Macrófagos Peritoneales/efectos de los fármacos , Macrófagos Peritoneales/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Obesidad/complicaciones , Obesidad/patología , Obesidad/terapia , Pérdida de Peso/inmunología
9.
Front Immunol ; 10: 2887, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31921150

RESUMEN

Macrophages are heterogeneous leukocytes regulated in a tissue- and disease-specific context. While in vitro macrophage models have been used to study diseases empirically, a systematic analysis of the transcriptome thereof is lacking. Here, we acquired gene expression data from eight commonly-used in vitro macrophage models to perform a meta-analysis. Specifically, we obtained gene expression data from unstimulated macrophages (M0) and macrophages stimulated with lipopolysaccharides (LPS) for 2-4 h (M-LPSearly), LPS for 24 h (M-LPSlate), LPS and interferon-γ (M-LPS+IFNγ), IFNγ (M-IFNγ), interleukin-4 (M-IL4), interleukin-10 (M-IL10), and dexamethasone (M-dex). Our meta-analysis identified consistently differentially expressed genes that have been implicated in inflammatory and metabolic processes. In addition, we built macIDR, a robust classifier capable of distinguishing macrophage activation states with high accuracy (>0.95). We classified in vivo macrophages with macIDR to define their tissue- and disease-specific characteristics. We demonstrate that alveolar macrophages display high resemblance to IL10 activation, but show a drop in IFNγ signature in chronic obstructive pulmonary disease patients. Adipose tissue-derived macrophages were classified as unstimulated macrophages, but acquired LPS-activation features in diabetic-obese patients. Rheumatoid arthritis synovial macrophages exhibit characteristics of IL10- or IFNγ-stimulation. Altogether, we defined consensus transcriptional profiles for the eight in vitro macrophage activation states, built a classification model, and demonstrated the utility of the latter for in vivo macrophages.


Asunto(s)
Artritis Reumatoide/inmunología , Diferenciación Celular/inmunología , Activación de Macrófagos , Macrófagos/inmunología , Transcriptoma/inmunología , Artritis Reumatoide/patología , Citocinas/inmunología , Citocinas/farmacología , Humanos , Lipopolisacáridos/toxicidad , Macrófagos/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...